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Dorsal fin ray counts for H. reidi ranged from 14 to 19, while H. 
erectus ranged from 15 to 19 dorsal fin rays. Both species had a 
median of 17 dorsal fin rays (Fig. 3A). However the dorsal fin ray 
counts in the hybrids ranged from 16 to 20 rays and had median 
number of 18 rays, which was significantly higher than either 
parent species (Fig. 3A). Pectoral fin ray counts ranged from 11 
to 18 for H. reidi, 11 to 15 in H. erectus, and 10 to 15 rays in the 
hybrids (Fig. 3B). All three groups had significantly different median 
numbers of pectoral fin rays, with the median number of rays in 
hybrids being less than both parent species. Hippocampus reidi 
trunk ring counts ranged from 9 to 14, H. erectus counts from 10 
to 14, and hybrid counts from 11 to 15 (Fig. 3C). All three groups 
had significantly different median numbers of trunk rings, with the 
hybrids having a median of two and three more trunk rings than 
H. erectus and H. reidi, respectively (Fig. 3C). Tail ring counts had 
very broad ranges, with H. reidi ranging from 22 to 34 rings, H. 
erectus from 26 to 37, and the hybrids from 31 to 39 (Fig. 3D). All 
medians were significantly different, with H. reidi at 30, H. erectus 
at 33, and the hybrids with more rings than either parent species 
at 36 (Fig. 3D).

Figure 3. Median ± Median Absolute Deviation (MAD) [A] dorsal fin rays, [B] pectoral fin rays, [C] trunk rings, and [D] tail ring counts of Hippocampus reidi, 
H. erectus, and H. erectus ♂ × H. reidi ♀. Frequency distributions of each meristic trait presented in bottom section of each panel. Sample size (n) = 9 for 
each age period (5, 10, 15, 20, and 30 days post-release) for a total pooled sample size (n) = 45 for each species. Two hybrid cohorts were reared and pooled 
for a sample size (n) = 90 for hybrid. Potential differences in age were accounted for using age as a covariate, and data presented as pooled. Significant 
differences in median number of rays are indicated by different lower case letters.

Discussion

Traditionally, morphological examination — including colour 
patterns  and meristics — is used to identify seahorse species 
(Lourie et al. 2004). At young ages, colour patterns have not yet fully 
matured, and may not be useful for identification.  Additionally, 
meristic traits can be plastic (Hubbs 1922) and encompass a wide 
range in counts within a species (Lourie et al. 1999). Meristic 
traits in hybrids tend to be intermediate between parent species 
(Hubbs 1955; Fleming et al. 2014); however of the four meristic 
traits investigated for the H. erectus ♂ × H. reidi ♀ hybrids, three 
exhibited significantly higher medians, and one significantly 
lower than either parent species. Similarly, Leary (1983) reported 
consistently high meristic counts in hybrid salmonids. Certain 
critical periods of development determine counts of meristic traits 
in fishes (Tåning 1950; Lindsey 1954; MacCrimmon and Kwain 
1969; Lindsey and Harrington 1972; Ali and Lindsey 1974). Leary 
et al. (1985) proposed that differences in timing and duration of 
critical periods between parent species can lead to higher meristic 
counts than either parent species. Nevertheless, the medians for 
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the hybrids fall within the observed count distributions of one or 
both parent species. Coupled with the wide range in counts, it is 
unlikely that high confidence identifications of potential hybrids 
can be made from investigating meristics alone. 

In cases of cryptic morphology, molecular markers have been 
applied successfully for the detection of hybrids and genetic 
introgression in other fishes (Perez et al. 1999; Congiu et al. 2001; 
Scribner et al. 2001; Park et al. 2003; Gante et al. 2004; Tiedemann 
et al. 2005; Gunnell et al. 2008; Aboim et al. 2010; do Prado et 
al. 2011). Here we were able to effectively detect interspecific 
Hippocampus hybridisation at the molecular level using PCR-RFLP 
and DNA sequencing. PCR-RFLP showed the parent species were 
homozygous for both S7 and Tmo-4c4 markers about the cleavage 
polymorphism. The F

1 progeny from the VBML and Seahorse 
Source were all heterozygous for both markers, consistent with 
F1 interspecific hybrids (see Fig. 2), making the BsrBI and Ms1I 
enzymes effective for the discrimination of H. erectus, H. reidi, 
and their reciprocal F1 interspecific crosses. However, the direction 
of the cross cannot be discerned with the current protocol. 
Specimens from SCL at Mote Marine Laboratory were determined 
to be heterozygous for the Tmo-4c4 marker, but homozygous for 
the H. erectus allele for the S7 marker. The partial heterozygosity of 
the Mote specimens indicates post-F

1 hybrids, and likely products 
of a back cross to H. erectus. Currently, it is unknown if F1 hybrids 
can cross and produce F2 progeny; however, F1 hybrids have been 
backcrossed to H. erectus in the past (Seahorse Source Inc.).   

Hippocampus erectus ranges from as far north as Nova Scotia 
(Canada) down to the Amazon River Barrier in Brazil (Lourie et al. 
2004; Boehm et al. 2013), while H. reidi ranges from the southern 
United States of America down to the southernmost reaches of 
Brazil (Lourie et al. 2004; Boehm et al. 2013). This makes the entire 
Gulf of Mexico and the wider Caribbean a sympatric contact zone 
between H. erectus and H. reidi; however, the lack of wild hybrid 
documentation may be a result of a scarcity of studies employing 
combined informative nuclear and mitochondrial markers with 
such a purpose (Wilson 2006; López et al. 2010). 

The evolutionary origin of seahorses — upright posture — 
dates back to the splitting off from the pygmy pipehorse lineage 
in the late Oligocene, 33.9–23 MYA (Teske and Beheregaray 
2009). Four major Hippocampus clades, separated by millions 
of years of divergence, are recognised (Teske et al. 2004; Teske 
and Beheregaray 2009). One of the clades is subdivided into 
four subclades, two of which invaded the Atlantic on separate 
occasions (Teske et al. 2004). Hippocampus erectus is a descendent 
of the first invasion before the closure of the Tethyan seaway 14– 
6.7 MYA (Hsü and Bernoulli 1978; Sonnenfeld 1985; Vrielynk et 
al. 1997), while the clade containing H. reidi invaded after the 
closure (Teske et al. 2004). Hippocampus erectus and H. reidi 
produced viable hybrid offspring, even though they are separated 
by millions of years of divergence (Teske et al. 2004; Teske and 
Beheregaray 2009; Boehm et al. 2013). It appears that the degree 
of evolutionary separation between Hippocampus species has 
not led to any substantial initial postzygotic barriers, though the 
reproductive capabilities of the hybrids still need to be evaluated 
in detail. As wild seahorse hybridisation is scarce, prezygotic 
barriers such as allopatry, complex reproductive behaviours, and 
population densities in sympatric species can be important factors 
that curb hybridisation (Vincent 1994; Vincent and Sadler 1995; 
Masonjones and Lewis 1996; Jones et al. 1998; Jones and Avise 
2001; Wilson et al. 2003; Foster and Vincent 2004; Otero-Ferrer 
et al. 2011). 

Wild seahorse populations tend to be patchy and densities have 
been reported to be very low — typically less than 0.5 individuals/
m2 (Perante et al. 2002; Bell et al. 2003; Foster and Vincent 2004; 
Moreau and Vincent 2004; Freret-Meurer and Andreata 2008), 
but some patches have been recorded with densities as high as 

10 individuals/m2 (Foster and Vincent 2004). Display aquaria and 
other captive conditions such as aquaculture settings are known 
to house seahorses in extremely dense conditions. High density 
coupled with the lack of predators, an optimal and stable breeding 
environment, and plentiful access to a high quality diet, may 
cause the cross-species behavioural barriers to disintegrate and 
lead to hybridisation events in captivity, even in the presence of 
conspecifics. 

The AZA has implemented an SSP programme for Hippocampus 
and these programmes hinge on stocks genetically reflective of 
the wild species (no hybridisation or gene introgression from 
other species). However, there are institutions that have in the 
past or currently co-house H. erectus and H. reidi. This in itself 
is harmless, unless progeny from such housings are reared and 
thus bring uncertainty into the progeny’s parentage – especially 
since copulation events often go undocumented and parentage is 
paternally inferred, thus masking the potential for a heterospecific 
female.  This is emphasised by the post-F

1 individuals from Mote, 
where backcrossing could have gone undetected. It is important 
to segregate the species in captive settings if the stocks are to be 
used in breeding programmes. 

The production and keeping of hybrid seahorses has been 
intensely discouraged under any circumstances (Project Seahorse 
2009) to, for example, safeguard captive breeding programmes 
and wild populations from potential hybrid releases. This rigid 
framework sits well within the guise of the SSPs and other 
conservation breeding efforts. However, since F

1 hybrids can 
easily go undetected, for facilities that need to maintain species- 
specific breeding programmes, it is advisable that incoming stocks 
are genetically screened prior to entering a breeding programme. 
The protocol described herein is effective for discriminating F1 and 
some post-F1 individuals. However, additional markers need to be 
assayed to be able to accurately detect the many possible post-F1 
hybrids and backcrosses. Furthermore, in facilities that currently 
co-house H. erectus and H. reidi — or have in the past — and 
have produced progeny from comingled broodstock, it would be 
advisable to genetically screen any current progeny for potential 
hybrids and genetic introgression to avoid threatening the viability 
of the breeding programme.

Although there may be a perceived risk to wild populations in 
producing hybrids, the use of hybrids in aquaculture is widespread 
and has many benefits, such as novel colour patterns (Baensch 
and Tamaru 2009), sensory repertoire expansion (Sandkam et 
al. 2013), increased growth rates (Tuncer et al. 1990; Gunther et 
al. 2005), manipulation of sex ratios (Wolters and DeMay 1996), 
production of sterile animals (Khan et al. 1990), and ‘hybrid 
vigour’ (Rahman et al. 1995). With exceptionally high demand 
for seahorses for the traditional Chinese medicine trade (Vincent 
1995), the use of hybrid crosses can aid in the aquaculture 
production of seahorses for these markets. The increased 
efficiency of aquaculture production of seahorses can benefit wild 
populations, by helping to curb wild collections. It is feared that if 
hybrids become mainstream in aquaria (public or private), it can 
threaten the integrity of captive lines in breeding programmes 
due to the difficulty in identifying hybrids morphologically. 
Furthermore, if interspecific hybrid seahorses are to be employed, 
detailed records ought to be kept and line vigour and productivity 
traced, as post-F

1 hybrids may exhibit reduced vigour (Templeton 
1986) and offspring viability. Furthermore, the development and 
employment of more fine-scale genetic markers, such as DNA 
microsatellites or single nucleotide polymorphism, can aid in the 
assessment of the degree of relatedness among individuals and 
facilitate the selection of optimal pairs for breeding to either curb 
or encourage hybridisation. Nonetheless, it is the responsibility 
of the host institution or breeder to verify stock origin and if 
necessary the genetic makeup (hybrid or introgressed) of any 
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animal they intend to bring into a breeding programme (which is 
already a goal of AZA’s SSP programmes), whether hybrids exist 
or not. Thus, the dismissal of the production and use of hybrids 
can be very shortsighted, and robs us of a potentially viable, albeit 
nontraditional, avenue of seahorse conservation.  

Conclusion

Two western Atlantic seahorse species from different evolutionary 
subclades — Hippocampus erectus and H. reidi — can reciprocally 
produce viable hybrid F1 offspring. The hybrid F1 exhibit higher 
median meristic counts for various traits, although large ranges 
in counts make it difficult to identify hybrids by meristics alone. 
Using PCR-RFLP, the use of both the BsrBI and Ms1I enzymes at 
the Tmo-4c4 and S7 loci, respectively, are effective at identifying 
F

1 and some post-F1 hybrids. This study shows that under captive 
conditions H. erectus and H. reidi can produce viable offspring 
and that the offspring can be readily reared. This illustrates the 
importance of species segregation for breeding programmes. 
Hybrid seahorses bred in captivity are believed to pose a threat 
to wild populations if released. However, there may be many 
benefits to producing captive hybrid seahorses, including 
improved aquaculture techniques that can curb the wild collection 
of seahorses that merit further research.     
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